2025年辽宁省考行测技巧:利用捆绑法解排列组合题

排列组合问题是行测考试中的常考题型,在排列组合的题目中元素的要求也是各式各样,针对不同要求,我们有不同的技巧。今天带大家来学习其中的一个技巧:捆绑法。
一、应用环境
题干中有元素要求相邻。
二、操作方法
1.把要求相邻的元素捆绑起来视为一个整体,与剩余其他元素进行排列;
2.结合题干考虑相邻元素之间是否有内部顺序的要求,若有内部顺序要求则进行相邻元素的内部排序。
三、经典例题
【例1】某场科技论坛有5G、人工智能、区块链、大数据和云计算5个主题,每个主题有2位发言嘉宾。如果要求每个主题的嘉宾发言次序必须相邻,则共有多少种不同的发言次序?
A.120
B.240
C.1200
D.3840
答案:D
【解析】要求每个主题2位嘉宾发言次序必须相邻,相邻问题用捆绑。
第一步,分别将5个主题的每2位嘉宾捆绑在一起看成一个人,先给5个捆绑进行排序情况数为=120;
第二步,5个捆绑内每2个人都有=2的内部全排列顺序;
第三步,最终的发言情况数为×()5=120×32>120×30=3600。
因此,选择D选项。
【例2】有两个三口之家一起去旅游,他们被安排在两排相对的座位上,其中一排有3个座位,另一排有4个座位。如果同一个家庭成员只能被安排在同一排座位相邻而坐,那么共有多少种不同的安排方式?
A.36
B.72
C.144
D.288
答案:C
【解析】
1.定义座位类型:
米3座排:A、B、C
4座排:X、Y、Z、M米
排列家庭成员:
第一家三口人坐在3座排的方式有6种(ABC代表三个家庭成员,可以是ABC或ACB等)*第二家三口人坐在4座排的方式有12种(XYZM代表三个家庭成员,可以是XYZM或XMYZ或XYZM等)。
3.计算总的排列方式:
根据上述分析,我们可以得到总的不同安排方式为$6 times 12=72$种。
综上所述,正确的答案为B.72。




闂佸搫顦悧鎰涢崟顖涘仼闁绘劗鍎ら崕鎴澝归敐鍩挎帡宕戦幘璇茬闁挎梻鎳撴禍鎯归敐澶樻闁汇劍鍨甸埥澶愬箻绾惧顥濋悗瑙勬礈閸犳劙骞忛崨顓у悑闁割偅鑹炬禍楣冩煕閹伴潧骞樻俊鑼归湁婵犙冪仢閳ь剚鐗滅划濠囨晜閸撗咁槰闂侀潧鐗嗛幊鎰婵犳碍鐓涢柍褜鍓熷畷锝夊Ψ閵娿儱绠戦梻浣瑰缁嬫垿鎯夋總绋跨;闁挎繂顦粈鍕攽閻樺磭顣查柟宕囧█閺岀喖鎮€涙ê顏�闂備線娼уΛ鎾箯閿燂拷2025闂備胶枪濞存岸宕滃▎鎰弿闁绘梻鍘у婵囦繆椤栨瑨顒熸俊顖氼儔閺岋綁顢旈崘鈺冦偘婵炲濮撮悧鎾诲箠閹捐绀冩い顓熷灦鏍¢梻浣稿悑濠㈡﹢宕妸鈺佺劦妞ゆ帒锕ョ€氾拷闂備礁鎲″缁樻叏閹绢喖鐭楅柛鈩冪懅缁€鍐煏閸繄澧旈柛鐘诧躬閺屻劌鈽夊Ο鍨伃閻熸粍婢樺鍓佺矉瀹ュ鏁冮柕蹇曞Х缁夘剟姊虹粙璺ㄧ缂佸鍏樺畷褰掑磼閻愭潙娈屾繛杈剧到閹芥粓鎮烽敓锟�1闂佽娴烽。顕€骞忛敓锟�1闂佽崵鍠愰悷杈╁緤閸ф鍋ら柣鏃傚帶鐎氬鈧箍鍎遍幊搴綖閵堝鐓ユ繛鎴炃圭€氫即鏌涘Ο绋库偓妤呭箯绾懌浜归柟鐑樼箖濞堫參姊洪崨濠勬噭闁绘鍋熺划锝呂熺亸鏍т壕闂侇偅绋栭崗灞剧箾閹捐泛鍘撮柟铏崌瀹曟﹢鍩為悩杈╃獢妤犵偛绻橀幃銏犵暋閹殿喓鍋i梻浣瑰缁嬫垿鎳熼姣椽寮介鍌滄澑闂佺硶鍓濋悷銉┿€傛總鍛婂仯闁搞儯鍔嶇粈瀣亜閿濆嫮鐭欑€规洩绻濆畷娆撳Χ閸モ晩妲烽梻浣呵圭换鍫ュ礉瀹€鍕┾偓鍐ㄢ堪閸涱垳鐣堕梺鍝勫暙濞层劌危閹间焦鈷掗柛顐g☉閻忛亶鏌i敂璇茬仸鐎殿噮鍋嗛埀顒勬涧閹诧繝宕愰悙鐑樺仯鐟滃秶鈧凹鍙冨鎼佹晸閻樿櫕娅栭梺璺ㄥ櫐閹凤拷
点击分享此信息:
