辽宁行测数量关系几何特性

更多行测技巧与方法扫码获取


几何问题是数量关系中非常重要的题型,因此考生需要重点掌握。几何问题分为几何计算、几何特性等题型,几何计算类题目主要运用基本公式解题,考生需要熟记一些常用的公式,几何特性类题目主要运用几何特性去解题,常用的几何特性包括相似图形的尺寸扩大理论和几何最值定理,今天小编带着大家一起学习一种常考的几何特性——相似图形的尺寸扩大理论。
【理论知识】
相似图形的尺度扩大理论:若将一个图形尺寸扩大为原来的N倍,对应角度不变;对应周长变为原来的N倍;面积变为原来的𝑁2倍;体积变为原来的𝑁3倍。
几何问题中有些题目用基本公式解题非常麻烦,如果可以用相似图形的尺寸扩大理论去解题,题目就会变得非常简单,比如下面这两个题目。
【例1】一块三角形农田ABC(如下图所示)被DE、EF两条道路分为三块。已知BD=2AD,CE=2AE,CF=2BF,则三角形ADE、三角形CEF和四边形BDEF的面积之比为:( )

A.1:3:3
B.1:3:4
C.1:4:4
D.1:4:5
【答案】C
【解析】第一步,本题考查几何问题,属于几何特殊性质类。
第二步,由BD=2AD,CE=2AE,CF=2BF,则DE∥BC,EF∥AB,即四边形BDEF是平行四边形,可得BD=EF,DE=BF。△ADE、△EFC和△ABC相似,符合相似图形的尺寸扩大理论,
△EFC的边长是△ADE的2倍,面积是△ADE的22=4倍,则△ADE和△CEF的面积之比是1:4。由BD=2AD,可知AB=3AD,△ABC的边长是△ADE的3倍,面积是△ADE的32=9倍,
则三角形ADE、三角形CEF和四边形BDEF的面积之比为:1:4:4。
因此,选择C选项。
【例2】某甜品店出售一种规则球形的甜品,该甜品由内部中空的球形面皮(每立方厘米成本0.4元)和实心的芝士球(每立方厘米成本1元)组成。无论甜品大小规格如何,其中的芝士球半径始终为甜品半径的四分之三。已知制作半径为1厘米的该甜品成本约为2.73元,那么要制作半径为2厘米的该甜品,成本约为:
A.5.46元
B.7.45元
C.14.92元
D.21.88元
【答案】D
【解析】第一步,本题考查几何问题,属于几何特殊性质类。
第二步,球体体积之比等于半径之比的立方,半径2厘米甜品的体积为半径1厘米甜品体积的2³=8倍,因此制作半径为2厘米甜品的成本为半径1厘米甜品的8倍。
第三步,成本约为2.73×8=21.84(元)。
因此,选择D选项。
从上面这两个例题就可以看出,有些题目如果用基础公式去解题,会非常复杂,尤其第二道题目,但是如果用相似图形的尺寸扩大理论解题就会大大减少计算量,加快做题速度。




闁哄鐗愬Λ鍕偩閻愮儤鍎戝ù锝埿掗崑鎾诲礃閿旂懓浜惧ù锝夘棑閻ㄦ垵鈽夐幘纾嬪鐎规洜鍠愰幏鍛吋閸艾浜鹃柛鎰靛幘濡茬ǹ霉濠у灝鈧牜绮婇敂鍓х闁靛牆鎳愮壕濠氭煛閳ь剟宕i妷銊ュ箑闂佹寧绋戦惉濂稿磻閿濆绀勫┑鐘崇閹崇娀鏌熼悮瀛樺闂侀潧妫撮幏锟�2025闂佺ǹ娴氶崜娆愭叏閻旂厧宸濇俊顖欒濡鏌i鍐╃グ濞寸姴鐗撻幊鎾诲礃椤垶校闂佸吋婢橀崯銊╁焵椤掑﹥瀚�闂佸憡姊绘慨鎾矗閸℃瑧绀冮柕鍫濈墔閸犲﹪鏌ㄥ☉妯垮鐟滄澘寮剁粋宥夘敃閵忕姷绉梺绋跨箰缁夌兘宕归崒鐐村殌濞达絽鎽滈悷锟�1闁诲海顣幏锟�1闁荤喐鐟辩徊鍧楁偤閻旂厧瀚夌€广儱鎳庨~銈夋煥濞戞ǹ瀚伴柛妯稿€楅幏纭呫亹閹烘繃娈梺鍛婄懄閻楃偟绮eΟ灏栧亾闁稖鍏屾繛鎾跺厴閹虫捇宕橀埞鐘辩窔楠炲繘鎮㈠畡鎵偣闂佹寧绋戦懟顖毭洪弽顒傜杸闁糕剝鐟ラ。濂告偣閸ャ劍绀嬫い锝勭矙瀹曪繝宕欓妶鍥╊槷闂佺ǹ绻堥崝宀勩€冨⿰鍛當闁哄啫娲ㄥΣ鎼佹⒒閸稑鐏遍柣锔诲灦瀵偆鈧潧鎲¢崐鐐烘偣瑜嶇€氼參寮搁敓鐘虫櫖闁跨噦鎷�
点击分享此信息:
