辽宁公考行测数量关系,掌握解题原则,巧解和定最值



和定最值,即和一定的情况下求某一量的最大值或最小值。其核心解题原则为求某量最大值,让其它量尽量小;求某量最小值让其它量尽量大。
下面通过两个例题,学习掌握和定最值类题目的解题原则和解题思路。
【例1】有51个优秀员工的名额分配到6个部门,根据员工工作表现,每个部门分得的名额数各不相同,则分得名额最多的部门至少有几个名额?
A.11
B.12
C.13
D.14
答案:A
【解析】51个优秀员工名额分配到6个部门,可知6个部门分得的优秀员工总和确定,求分得名额最多的部门至少有几个名额,符合和定最值类题目题型特征。根据核心解题原则,求某量的最小值让其它量尽量大,要使分得名额最多的部门分得名额取到最小值,其它部门分得的优秀员工名额应尽量的多。设分得名额最多的部门分到X个名额,而每个部门分得的名额数各不相同且还要尽量多,则分得名额数第二多到第六多的部门分得的优秀员工数分别为X-1、X-2、X-3、X-4、X-5名。6个部门分得的名额总数为51,则可建立等量关系列出方程X+(X-1)+(X-2)+(X-3)+(X-4)+(X-5)=51,整理可得6X-15=51,解得X=11。求得分得名额最多的部门至少有11个名额,此题选A。
【例2】某单位2021年招聘了65名毕业生,拟分配到该单位的7个不同部门。假设行政部门分得的毕业生人数比其他部门都多,问行政部门分得的毕业生人数至少为多少名?
A.10
B.11
C.12
D.13
答案:B
【解析】招聘65名毕业生分配到7个部门,求分得最多的行政部门至少分多少名,符合和定最值类题型特征。要使分得毕业生人数最多的行政部门人数最少,根据和定最值类题目核心解题原则,求某量最小值,让其它量尽量大,则其余部门人数尽可能多,即各部门人数尽量接近(此题没有说相互不相等,那就可以相等)。设行政部至少分得X名毕业生,则其它部门最多都可分得X-1名毕业生。7个不同部门共分得65名毕业生,可建立等量关系列出方程X+6(X-1)=65,整理得7X-6=65,解得X=10.x,至少分10.x,但人数必须为整数,不能比10.x再小,则应分11人。此题选B选项。




更多精彩等待你发现
閺夊牐妫勯悾鐐烘儑娴hВ鍋撻崘锔瑰亾娴i鐨戝☉鎾磋壘瀹曠喐鎷呭鍫氬亾閸愵厾妲稿ù婧垮€栫粊锔剧礃閵堝懐纾婚柡鈧崣銉ㄥ幀闁挎稑鐬奸崑锝夊礄婵犳碍鎳犻柟鐚存嫹闁靛棴鎷�2025闁稿浚鍓欐慨鐔煎川濡警妯嬮柣顏冩祰娴犲牓鎳撻崘顭戞У闁兼澘鍟ㄩ埀顒婃嫹闁告梻濮撮崣鍡欑礃閵堝牅鍠婇柨娑樿嫰瑜板弶绂嶉銏犵秬闁稿繐绉烽崹鍌炴嚀娴e摜鐟�1閻庣鎷�1閻熸瑱绲块悺鐔煎嫉瀹ュ懎顫ら柨娑樿嫰閸樸倗鎷硅ぐ鎺濇殭闁告瑦鐗炵粣妯尖偓閫涜兌濞撶兘鎳撻崘鈹犱線骞忛悢宄扮ス闁挎稑鑻ú鏍疀閸℃瑥顣奸悹鍥ㄦ礋椤d粙宕¢崙銈囩闁稿繈鍔岄〃婊呯箔閺冨洨妲搁梻鍫涘灱閻︻垶寮€靛憡鍊為悹褍瀚弸锟犳晬閿燂拷
点击分享此信息:
