辽宁省考数量关系解决重点题型,必拿高分!



一、基本概念
工程问题中涉及到工作量、工作时间和工作效率三个量。
工作量:指工作的多少,可以是全部工作量,在没有指明具体数量时,工作总量可视为已知量。一般来说,可设总量为“1”;部分工作量用分数表示。也可以设为题干中的对应时间最小公倍数。
工作时间:指完成工作的所需时间,常见的单位一般为小时、天。这里需要注意“单位时间”这个概念。当工作时间的单位是小时,那么单位时间为1小时;当工作时间的单位是天,那么单位时间为1天。
工作效率:指工作的快慢,也就是单位时间里所完成的工作量。工作效率的单位一般是“工作量/天”或“工作量/小时”。
二、基本公式
工作量、工作时间、工作效率三个量之间存在如下基本关系式:
工作量=工作效率×工作时间
工作效率=工作量÷工作时间
工作时间=工作量÷工作效率
三、解题技巧
解题时基本就是俩大类方法,第一,正反比例思想解题,第二,设特值。
1.可以根据正反比例来解决问题
当时间一定,工作总量与效率成正比。当效率一定,工作总量与时间成反比。当工作总量一定,效率与时间成反比。
2.设特值
(1)可以设效率为单位1,或是设效率为对应效率比值。
(2)可以设工作总量为单位1,或是对应时间最小公倍数。
接下来给大家分享三个常考例题解析:
★同时合作型

【答案】B
【解析】(1)设工作总量为完成工作所需时间的最小公倍数,A、B管加满水需要90分钟,A管加满水需160分钟,因此把水量设为1440份。
(2)分别求出A、B工作效率:A、B管每分钟进水量=16份,A每分钟进水量=9份,因此B每分钟进水量=7份。
(3)求题目所问。由于B效率为7份,因此B管每分钟的进水量必定是7的倍数,四个选项,只有B选项是7的倍数,因此可直接选出B选项。
同时合作型题是历年考试中常考的工程类问题之一,近年难度有所增加。这道题目中,涉及到了具体的量"A管比B管多进水180立方米",因此不能把工作量设为一个简单的常数,而必须把其设为份数。
★环比和同比

【答案】A
【解析】(1)设工作总量为完成工作所需时间的最小公倍数,甲、乙完成工作各需20天、10天,因此设工作总量为20。
(2)分别求出甲、乙工作效率:甲效率=1,乙效率=2。
(3)求题目所问。题目要求让甲、乙轮流挖,一个循环(甲乙两人各挖1天)共完成工作量1+2=3。如此6个循环后可以完成工作量18,还剩余2,需要甲挖1天,乙挖半天。因此一共需要时间6×2+1+1=14(天)。
"交替合作型"工程问题,是最新考察的重点题型,在09年的国考和10年的联考中有所考察,也是考生易错的难点题型。由于合作的"交替性",不能简单的使用基础公式进行计算,而特别需要注意工作的"一个周期"所需要的时间。
【解析】由于这道题直接告诉了甲、乙、丙的效率比,因此直接设甲、乙、丙的效率比为6、5、4,设丙在A工程工作x天,则有方程6×16+4x=5×16+4(16-x),求出x=6。
解题步骤第一步"设工作总量为常数",实际上就是为了求效率,而此题直接告知了效率,因此可以跳过第一步。




闁哄鐗愬Λ鍕偩閻愮儤鍎戝ù锝埿掗崑鎾诲礃閿旂懓浜惧ù锝夘棑閻ㄦ垵鈽夐幘纾嬪鐎规洜鍠愰幏鍛吋閸艾浜鹃柛鎰靛幘濡茬ǹ霉濠у灝鈧牜绮婇敂鍓х闁靛牆鎳愮壕濠氭煛閳ь剟宕i妷銊ュ箑闂佹寧绋戦惉濂稿磻閿濆绀勫┑鐘崇閹崇娀鏌熼悮瀛樺闂侀潧妫撮幏锟�2025闂佺ǹ娴氶崜娆愭叏閻旂厧宸濇俊顖欒濡鏌i鍐╃グ濞寸姴鐗撻幊鎾诲礃椤垶校闂佸吋婢橀崯銊╁焵椤掑﹥瀚�闂佸憡姊绘慨鎾矗閸℃瑧绀冮柕鍫濈墔閸犲﹪鏌ㄥ☉妯垮鐟滄澘寮剁粋宥夘敃閵忕姷绉梺绋跨箰缁夌兘宕归崒鐐村殌濞达絽鎽滈悷锟�1闁诲海顣幏锟�1闁荤喐鐟辩徊鍧楁偤閻旂厧瀚夌€广儱鎳庨~銈夋煥濞戞ǹ瀚伴柛妯稿€楅幏纭呫亹閹烘繃娈梺鍛婄懄閻楃偟绮eΟ灏栧亾闁稖鍏屾繛鎾跺厴閹虫捇宕橀埞鐘辩窔楠炲繘鎮㈠畡鎵偣闂佹寧绋戦懟顖毭洪弽顒傜杸闁糕剝鐟ラ。濂告偣閸ャ劍绀嬫い锝勭矙瀹曪繝宕欓妶鍥╊槷闂佺ǹ绻堥崝宀勩€冨⿰鍛當闁哄啫娲ㄥΣ鎼佹⒒閸稑鐏遍柣锔诲灦瀵偆鈧潧鎲¢崐鐐烘偣瑜嶇€氼參寮搁敓鐘虫櫖闁跨噦鎷�
点击分享此信息:
